4.8 Article

Electrospun nanofiber scaffolds for rapid and rich capture of bone marrow-derived hematopoietic stem cells

Journal

BIOMATERIALS
Volume 29, Issue 13, Pages 2096-2103

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2008.01.024

Keywords

electrospinning; nanofiber; hematopoietic stem cells; cell adhesion

Ask authors/readers for more resources

Interactions between bone marrow-derived hematopoietic stem cells (BM-HSCs) and their local microenvironment are an integral part of signaling control of BM-HSCs migration, proliferation and differentiation. We hypothesized that both substrate topographical and biochemical cues promote BM-HSCs adhesive behaviors, which are crucial for BM-HSCs' homing, self-renewal and lineage commitment within their microenvironment. We employed electrospinning technique to fabricate nanofiber scaffolds (NFS) with poly(DL-lactide-co-glycolide) blended with collagen I. NFS was further coated with E-selectin, a critical adhesive biomolecule. Capture efficiency study showed that blended NFS, after coated with E-selectin, significantly increased cell capture percentage from 23.40% to 67.41% within 30 min and from 29.44% to 70.19% within 60 min of incubation at room temperature. This study highlights the potential of using a biomimetic scaffold to design a site-specific niche-like unit for facilitating proliferation or differentiation functions of BM-HSCs. (c) 2008 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available