4.4 Article

Incorporation of radioactive contaminants into pyroaurite-like phases by electrochemical synthesis

Journal

CLAYS AND CLAY MINERALS
Volume 48, Issue 2, Pages 266-271

Publisher

CLAY MINERALS SOCIETY
DOI: 10.1346/CCMN.2000.0480213

Keywords

coprecipitation; groundwater remediation; pyroaurite; technetium; uranium; zero-valent iron

Ask authors/readers for more resources

During electrochemical remediation of radionuclide, U-235, U-228, and Tc-99-contaminated aqueous solutions, pyroaurite-like phases, ideally [M(II)M(III)(OH)(16)CO3. 4H(2)O] where M = Fe, were synthesized following coprecipitation with iron from metal iron electrodes. The effect of radionuclides on the transformation of amorphous precipitates to crystalline pyroaurite-like phases was investigated using X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray analysis, Fourier-transform infrared (FTIR) spectroscopy, and fluorescence spectroscopy. The synthetic iron carbonate hydroxide phases showed primary XRD peaks at 0.7 and 0.35 nm and FTIR spectra that indicated the presence of a brucite-like sheet structure with carbonate anions occupying the interlayer. Divalent and trivalent iron, eroded from the electrode, occupies the octahedral sites of the brucite-like sheets. The carbonate anions in the interlayer balance the excess positive charge from isomorphous substitution of the Fe2+ or Fe3+ by reduced uranium (U4+) and technetium (Tc4+). Because of the lower solubility associated with crystalline phases than amorphous phases, incorporation of radioactive contaminants into pyroaurite-like phases by electrochemical syntheses represents a more effective approach for removing U and Tc from contaminated aqueous solutions than traditional technologies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available