4.8 Article

The interaction between a combined knitted silk scaffold and microporous silk sponge with human mesenchymal stem cells for ligament tissue engineering

Journal

BIOMATERIALS
Volume 29, Issue 6, Pages 662-674

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2007.10.035

Keywords

ligament tissue engineering; combined silk scaffold; mesenchymal stem cell

Ask authors/readers for more resources

Cell seeding on knitted scaffolds often require a gel system, which was found to be practically unsuitable for anterior cruciate ligament (ACL) reconstruction as the cell-gel composite often gets dislodged from the scaffold in the in vivo dynamic situations. In order to solve this problem, we fabricated this combined silk scaffold with weblike microporous silk sponges formed in the openings of a knitted silk scaffold and subsequently combined with adult human bone marrow-derived mesenchymal stem cells (hMSCs) for in vitro ligament tissue engineering. Human MSCs adhered and grew well on the combined silk scaffolds. Moreover, in comparison with the knitted silk scaffolds seeded with hMSCs in fibroin gel the cellular function was more actively exhibited on the combined silk scaffolds, as evident by real-time reverse transcriptase-polymerase chain reaction (RT-PCR) analysis for ligament-related gene markers (e.g., type I, III collagen and tenascin-C), immunohistochemical and western blot evaluations of ligament-related extracellular matrix (ECM) components. While the knitted structure holds the microporous silk sponges together and provides the structural strength of the combined silk scaffold, the microporous structure of the silk sponges mimic the ECM which consequently promotes cell proliferation, function, and differentiation. This feature overcomes the limitation of knitted scaffold for ligament tissue engineering application. (c) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available