4.8 Article

The effect of gelatin incorporation into electrospun poly(L-lactide-co-ε-caprolactone) fibers on mechanical properties and cytocompatibility

Journal

BIOMATERIALS
Volume 29, Issue 12, Pages 1872-1879

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2007.12.029

Keywords

PLCL-gelatin fibers; cytocompatibility; electrospinning; fibroblasts

Funding

  1. Korea Health Promotion Institute [A050082] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)
  2. Ministry of Education, Science & Technology (MoST), Republic of Korea [gist-03-1] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)
  3. Ministry of Science & ICT (MSIT), Republic of Korea [GIST-03] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

Very elastic poly(L-lactide-co-epsilon-caprolactone) (PLCL) (50:50) copolymer blended with gelatin was electrospun into microfibers from a hexafluoroisopropanol solution. PLCL fiber sheet exhibited the unique soft and flexible behavior while gelatin fiber was hard and brittle. As the gelatin content of PLCL/gelatin fibers increased, Young's modulus was increased, but the elongation was decreased compared to those of PLCL. However, fibers containing 10-30 wt% gelatin demonstrated an enhanced tensile strength with still high elongation to be beneficial for tissue engineering scaffolds. The cytocompatibility of electrospun fiber sheets was evaluated by fibroblasts (NIH-3T3) cell culture. The initial cell adhesion on various fibers after 5 h was somewhat similar, but in the order of PLCL > PLCL70/gelatin30 approximate to PLCL50/gelatin50 > PLCL90/gelatin10 approximate to gelatin > PLCL30/gelatin70. However, the cell proliferation exhibited a completely different and strong dependence on the fiber composition: a very high proliferation rate on PLCL90/gelatin10, followed by PLCL > gelatin > PLCL70/gelatin30. Such an enhanced effect of gelatin, especially at 10 wt% content, on strength and cytocompatibility of PLCL/gelatin fibers would be very preferable for tissue engineering scaffolds. (C) 2008 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available