4.8 Article

Enzymatically crosslinked collagen-mimetic dendrimers that promote integrin-targeted cell adhesion

Journal

BIOMATERIALS
Volume 29, Issue 20, Pages 3034-3045

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2008.03.023

Keywords

collagen; dendrimer; biomimetic material; enzymatic crosslinking; cell adhesion; hepatocyte

Ask authors/readers for more resources

Collagen is made up of a diverse family of the extracellular matrices, most of which are generally found crosslinked in vivo. To more closely mimic the biological function of collagen, this work focuses on establishing a molecular strategy to engineer a functional biomimetic collagen that exhibits stable collagen-like triple-helical conformation with cell-binding activity, in addition to an enzyme-mediated crosslinking by tissue transglutaminase (tTGase). A novel sequence spanning residues 2800-2807 of human fibrillin-1 (EDGFFKI) was first identified as an amine donor substrate for tTGase, using a previously characterized APQQEA derived from human osteonectin as an amine acceptor probe. Subsequently, collagen-mimetic peptides (CMPs) supplemented with a cell-binding sequence (GFOGER) and the identified EDGFFKI and APQQEA substrate sequences were conjugated onto a generation 2 poly(amidoamine) dendrimer, resulting in a crosslinkable collagen-mimetic dendrimer, denoted as CMDK and CMD-Q, respectively. Both CMD-K and CMD-Q exhibited enhanced triple-helical stability and supported cell adhesion in an integrin-specific manner. Finally, tTGase-mediated crosslinking between CMD-K and CMD-Q resulted in a supramolecular structure that exhibited stable collagen-like triple-helical conformation and improved cellular recognition. The results show that the triple-helical structure is important in preserving the GFOGER cell-binding site while the tTGase-mediated protein crosslinking may also be crucial for the recognition by cell surface integrin receptors. (C) 2008 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available