4.8 Article

The effect of hyaluronic acid on silk fibroin conformation

Journal

BIOMATERIALS
Volume 29, Issue 6, Pages 633-642

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2007.10.024

Keywords

silk; hyaluronic acid; crystallization; secondary structure; mechanical properties

Ask authors/readers for more resources

The molecular conformation of silk fibroin drastically changes the physical properties of this biomaterial. Herein, we investigated the capacity of hyaluronic acid to modify the conformational transition of silk fibroin into its crystalline beta-sheet form. For this aim, matrices composed of these two polymers were prepared and studied. Instrumental analysis confirmed the presence of two intermixed phases: one of pure hyaluronic acid, and another consisting of a molecular dispersion of silk fibroin and hyaluronic acid. Studies performed with silk fibroin/hyaluronic acid matrices indicated that hyaluronic acid induces molecular transition of silk fibroin into a beta-sheet structure when incubated in water, and that it synergistically enhances beta-sheet formation together with methanol treatment. The enhancement of beta-sheet content observed for silk fibroin/hyaluronic acid matrices correlated with improved mechanical properties: blended matrices had higher compressive moduli and higher breaking strengths than pure silk fibroin matrices. These new properties, together with the capacity of silk fibroin/hyaluronic acid to form partially insoluble matrices without any treatment with organic solvents, make this blend composition an interesting material for biomedical applications. (c) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available