4.8 Article

The effects of high dose irradiation on the cross-linking of vitamin E-blended ultrahigh molecular weight polyethylene

Journal

BIOMATERIALS
Volume 29, Issue 26, Pages 3557-3560

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2008.05.004

Keywords

antioxidant; arthroplasty; cross-linking; gamma irradiation; joint replacement; polyethylene

Funding

  1. NIAMS NIH HHS [R01 AR051142-01, R01 AR051142, AR051142, R01 AR051142-03, R01 AR051142-02] Funding Source: Medline

Ask authors/readers for more resources

Vitamin E-stabilized, highly cross-linked ultrahigh molecular weight polyethylene (UHMWPE) is a promising oxidation and wear resistant UHMWPE with improved mechanical strength in comparison with the first generation, irradiated and melted UHMWPE. One approach of incorporating vitamin E in UHMWPE is through blending of vitamin E in UHMWPE powder followed by consolidation and radiation cross-linking. However, radiation cross-linking efficiency of UHMWPE decreases in the presence of vitamin E. Therefore an optimum vitamin E concentration and radiation dose level need to be determined to achieve a cross-link density comparable to 100-kGy irradiated and melted UHMWPE, which has shown excellent wear properties in vivo. We investigated the cross-link density and mechanical properties of vitamin E-blended UHMWPEs as a function of vitamin E concentration in the blend and gamma irradiation doses up to 200 kGy. We found that 0.3 wt% vitamin E-blended UHMWPE could not be crosslinked above a cross-link density achieved at a radiation dose of 65 kGy for virgin UHMWPE and 1.0 wt% vitamin E-blended UHMWPE could not be cross-linked above a cross-link density achieved at a radiation dose of 25 kGy for virgin UHMWPE even when the these UHMWPEs were irradiated to a radiation dose of 200 kGy. In addition, higher plasticity at vitamin E concentrations at and above 0.3 wt% indicated that increased chain scissioning may be prevalent. Since the wear resistance of this irradiated UHMWPE would be expected to be low, vitamin E concentrations equal to or above 0.3 wt% are not recommended for subsequent irradiation to achieve a wear resistant cross-linked UHMWPE. The long-term oxidative stability of irradiated blends with low vitamin E concentrations has yet to be studied to determine an optimum between cross-link density and long-term oxidative stability. (c) 2008 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available