4.7 Article

The effect of the hydrothermal carbonization process on palm oil empty fruit bunch

Journal

BIOMASS & BIOENERGY
Volume 47, Issue -, Pages 82-90

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.biombioe.2012.09.061

Keywords

Agricultural; Waste; Carbonization; Hydrothermal; Carbon

Funding

  1. Universiti Malaysia Pahang
  2. Malaysian Government

Ask authors/readers for more resources

Investigations of biomass conversion technologies and processes have been carried out intensively for the past two decades due to the reduction in the availability of landfill, stricter regulations, and increasing awareness of the problem. In this study we have concentrated on a wet-base biomass, in particular a waste stream from the commercial production of palm oil, empty fruit bunch (EFB). This has been converted through a hydrothermal carbonization process (HTC), where lignocellulosic material was converted in a low temperature and pressure environment to a product of increased carbon content offering the prospect of a material with a higher commercial value from an abundant waste stream. A purpose built pressure vessel was used in the presence of excess water at relatively low temperatures (180-220 degrees C) and saturated water pressures (1-22 MPa). The chemical and physical characteristics of the products were confirmed using elemental analysis, calorific value, SEM, FTIR and GCMS. The carbon value recorded a decrease of the O/C ratio of raw EFB = 0.85 to a HTC processed EFB of 0.55. The surface morphology obtained from SEM showed minimal structural modification of the material although small pores (10-13 mu m) were seen on the surface of the HTC processed material. This suggests a processing route that preserves the existing carbohydrate structure whilst increasing its carbon content, which offers a route to complex carbon-rich materials based upon naturally grown carbohydrate materials. (c) 2012 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available