3.8 Review

Intra- and extra-cellular lactate shuttles

Journal

MEDICINE AND SCIENCE IN SPORTS AND EXERCISE
Volume 32, Issue 4, Pages 790-799

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/00005768-200004000-00011

Keywords

intracellular lactate shuttle; monocarboxylate transporter; MCT gluconeogenesis; carbohydrate metabolism; lactate oxidation; cori cycle; glucose paradox; redox; mitochondria; mitochondrial MTC; mitochrondrial LDH; LDH

Categories

Funding

  1. NIAMS NIH HHS [AR42906] Funding Source: Medline
  2. NIDDK NIH HHS [DK19577] Funding Source: Medline

Ask authors/readers for more resources

The lactate shuttle hypothesis holds that lactate plays a key role in the distribution of carbohydrate potential. energy that occurs among various tissue and cellular compartments such as between: cytosol and mitochondria, muscle and blood, blood and muscle, active and inactive muscles, white and red muscles, blood and heart, arterial blood and liver, liver and other tissues such as exercising muscle, intestine and portal blood, portal blood and liver, zones of the liver, and skin and blood. Studies on resting and exercising humans indicate that most lactate (75-80%) is disposed of through oxidation, with much of the remainder converted to glucose and glycogen. Lactate transport across cellular membranes occurs by means of facilitated exchange along pH and concentration gradients involving a family of lactate transport proteins, now called monocarboxylate transporters (MCTs). Current evidence is that muscle and other cell membrane lactate transporters are abundant with characteristics of high K-m and V-max. There appears to be long-term plasticity in the number of cell membrane transporters, but short-term regulation by allosteric modulation or phosphorylation is not known. In addition to cell membranes, mitochondria also contain monocarboxylate transporters (mMCT) and lactic dehydrogenase (mLDH). Therefore, mitochondrial monocarboxylate uptake and oxidation, rather than translocation of transporters to the cell surfaces, probably regulate lactate flux in vivo. Accordingly, the lactate shuttle hypothesis has been modified to include a new, Intracellular component involving cytosolic to mitochondrial exchange. The intracellular lactate shuttle emphasizes the role of mitochondrial redox in the oxidation and disposal of lactate during exercise and other conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available