4.7 Article

A human cDNA library for high-throughput protein expression screening

Journal

GENOMICS
Volume 65, Issue 1, Pages 1-8

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1006/geno.2000.6141

Keywords

-

Ask authors/readers for more resources

We have constructed a human fetal brain cDNA library in an Escherichia coli expression vector for high-throughput screening of recombinant human proteins. Using robot technology, the library was arrayed in microtiter plates and gridded onto high-density filter membranes. Putative expression clones were detected on the filters using an antibody against the N-terminal sequence RGS-His(6) of fusion proteins. Positive clones were rearrayed into a new sublibrary, and 96 randomly chosen clones were analyzed. Expression products were analyzed by SDS-PAGE, affinity purification, matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry, and the determined protein masses mere compared to masses predicted from DNA sequencing data. It was found that 66% of these clones contained inserts in a correct reading frame. Sixty-four percent of the correct reading frame clones comprised the complete coding sequence of a human protein. High-throughput microtiter plate methods were developed for protein expression, extraction, purification, and mass spectrometric analyses. An enzyme as say for glyceraldehyde-3-phosphate dehydrogenase activity in native extracts was adapted to the microtiter plate format. Our data indicate that high-throughput screening of an arrayed protein expression library is an economical way of generating large numbers of clones producing recombinant human proteins for structural and functional analyses. (C) 2000 Academic Press.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available