4.6 Article

Shape selectivity in adsorption on the all-silica DD3R

Journal

LANGMUIR
Volume 16, Issue 7, Pages 3322-3329

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la9914007

Keywords

-

Ask authors/readers for more resources

The adsorption of ethane, ethene, propane, and propene on the all-silica DD3R has been investigated using the tapered element oscillating microbalance, TEOM. Single-component adsorption isotherms are for the first time reported at temperatures in the range from 303 to 473 K and at pressures up to 500 kPa. At high temperatures, the Langmuir isotherm appropriately describes the equilibrium adsorption data for ethane, ethene, and propene on the all-silica DD3R with energetically uniform sites. For the propene data below 340 K, a dual-site Langmuir model was used. Thermodynamic properties, like the isosteric heat and entropy of adsorption, have been determined. Only minor differences exist between the adsorption of ethane and ethene. Transient adsorption experiments reveal that the eight-ring windows of the all-silica DD3R are accessible to propene molecules, while they exclude propane molecules. The high shape selectivity for propene suggests that the all-silica DD3R might be effective as an adsorbent for the separation of propene and propane mixtures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available