4.7 Article

Phosphinic derivatives as new dual enkephalin-degrading enzyme inhibitors:: Synthesis, biological properties, and antinociceptive activities

Journal

JOURNAL OF MEDICINAL CHEMISTRY
Volume 43, Issue 7, Pages 1398-1408

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jm990483l

Keywords

-

Ask authors/readers for more resources

The development of dual inhibitors of the two zinc metallopeptidases, neprilysin (neutral endopeptidase) and aminopeptidase N involved in the inactivation of the opioid peptides, enkephalins, represents an attractive physiological approach in the search for new analgesics devoid of the major drawbacks of morphine. Phosphinic compounds, corresponding to the general formula H3N+-CH(R-1)-P(O)(OH)-CH2-CH(R-2)-CONH-CH(R-3)-COO-, able to act as transition-state analogues and to fit the S-1, S-1', and S-2' subsites of both enzymes were designed. Selection of the R-1, R-2, and R-3 residues for optimal recognition of these enzymes led to the first dual competitive inhibitors with K-i values in the nanomolar range for neprilysin and aminopeptidase N. These compounds induce potent analgesic responses after intracerebroventricular or intravenous administrations in mice (hot plate test), and several of them were shown to be, at least, 10 times more potent than the previously described dual inhibitors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available