4.4 Article

Interaction induced Raman light scattering as a probe of the local density structure of binary supercritical solutions

Journal

MOLECULAR PHYSICS
Volume 98, Issue 7, Pages 409-418

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/00268970009483306

Keywords

-

Ask authors/readers for more resources

Interaction induced Raman light scattering is presented as a unique tool for the understanding of solvation processes from the solute's point of view in weakly interacting solute-solvent systems. A review of pertinent literature shows that this technique should be useful at least in single-phase binary mixtures such as supercritical solutions. Methane is used here as a probe molecule at 10 mol% concentration (as the solute) and 90 mol% CO and CO2 are the solvents. The light scattering results, i.e., the dependence of the anisotropic intensities divided by density (I/d) on the density, are interpreted by use of the Duh-Haymet-Henderson closure (bridge) function of the Ornstein-Zernike integral equation. These data, together, are examined in the context of known supercritical solution thermodynamics and statistical mechanical results. It is shown that the light scattering I/d data versus density yield maxims in both attractive and repulsive solute-solvent systems. The local number density maxims were found near these same densities by the integral equation calculations for both methane + carbon monoxide or carbon dioxide using only Lennard-Jones single-centre parameters as input. The methane + carbon monoxide system is identified as weakly attractive (augmenting), whereas the methane + carbon dioxide system is identified as repulsive (avoidance).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available