4.8 Article

Riding the ice age El Nino?: Pacific biogeography and evolution of Metrosideros subg. Metrosideros (Myrtaceae) inferred from nuclear ribosomal DNA

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.050351197

Keywords

climate change; dispersal

Ask authors/readers for more resources

Metrosideros subg. Metrosideros (Myrtaceae) comprises approximate to 26 species distributed widely across the Pacific basin. They occur on the ancient Gondwanan landmasses of New Zealand and New Caledonia, as well as on the volcanic islands of the remote Pacific, from Melanesia to tropical Polynesia and the Bonin Island. Phylogenetic analysis based on nuclear ribosomal DNA spacer sequences from all named species showed Metrosideros umbellata of New Zealand as basal in the subgenus, with the remaining species falling into three monophyletic clades. One includes the seven New Caledonian species together with three daughters in western Oceania that probably dispersed during the mid/late Tertiary. A second contains six taxa located in east Melanesia and Samoa that may also have arisen from a mid:late Tertiary dispersal, in this instance from New Zealand. The third includes three New Zealand endemics along with all of the taxa in remote Polynesia and accounts for much of the total range of the subgenus. These dispersed taxa in Polynesia either are identical to the New Zealand species Metrosideros excelsa or differ by a single nucleotide change. We suggest that they are all derived from a Pleistocene dispersal out of New Zealand. A relatively recent dispersal is surprising, given that this wind-dispersed genus has occupied New Zealand for much of the Tertiary and that some of the islands in remote Polynesia date to at least the Miocene. We attribute this dramatic range expansion to climate change-specifically changes in wind flow patterns-in the southern hemisphere during worldwide glaciation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available