4.6 Article

E2F family members are differentially regulated by reversible acetylation

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 275, Issue 15, Pages 10887-10892

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.275.15.10887

Keywords

-

Ask authors/readers for more resources

The six members of the E2F family of transcription factors play a key role in the control of cell cycle progression by regulating the expression of genes involved in DNA replication and cell proliferation. E2F-1, -2, and -3 belong to a structural and functional subfamily distinct from those of the other E2F family members. Here we report that E2F-1, -2, and -3, but not E2F-4, -5, and -6, associate with and are acetylated by p300 and cAMP-response element-binding protein acetyltransferases. Acetylation occurs at three conserved lysine residues located at the N-terminal boundary of their DNA binding domains. Acetylation of E2F-1 in vitro and in vivo markedly increases its binding affinity for a consensus E2F DNA-binding site, which is paralleled by enhanced transactivation of an E2F-responsive promoter. Acetylation of E2F-1 can be reversed by histone deacetylase-1, indicating that reversible acetylation is a mechanism for regulation also of non-histone proteins.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available