4.6 Article

Farnesoid X receptor responds to bile acids and represses cholesterol 7α-hydroxylase gene (CYP7A1) transcription

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 275, Issue 15, Pages 10918-10924

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.275.15.10918

Keywords

-

Funding

  1. NIDDK NIH HHS [R01 DK044442, DK44442, R01 DK058379] Funding Source: Medline
  2. NIGMS NIH HHS [GM31584] Funding Source: Medline

Ask authors/readers for more resources

Cholesterol 7 alpha-hydroxylase gene (CYP7A1) transcription is repressed by bile acids. The goal of this study is to elucidate the mechanism of CYP7A1 transcription by bile acid-activated farnesoid X receptor (FXR) in its native promoter and cellular context and to identify FXR response elements in the gene. In Chinese hamster ovary cells transfected with retinoid X receptor alpha (RXR alpha)/FXR, only chenodeoxycholic acid (CDCA) and deoxycholic acid (DCA) were able to stimulate a heterologous promoter/reporter containing an ecdysone response element. In HepG2 cells, all bile acids (25 mu M) were able to repress CYP7A1/luciferase reporter activity, and only CDCA and DCA further repressed reporter activity when cotransfected with RXR alpha/FXR, The concentration of CDCA required to inhibit 50% of reporter activity (IC(50)) was determined to be approximately 25 mu M without FXR and 10 mu M with FXR. Deletion analysis revealed that the bile acid response element located between nucleotides -148 and -128 was the FXR response element, but RXR alpha/FXR did not bind to this sequence. These results suggest that bile acid-activated FXR exerts its inhibitory effect on CYP7A1 transcription by an indirect mechanism, in contrast to the stimulation and binding of FXR to intestinal bile acid-binding protein gene promoter. Results also reveal that bile acid receptors other than FXR are present in HepG2 cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available