4.6 Review

Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect

Journal

PHYSICAL REVIEW B
Volume 61, Issue 15, Pages 10267-10297

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.61.10267

Keywords

-

Ask authors/readers for more resources

We analyze pairing of fermions in two dimensions for fully gapped cases with broken parity (P) and time reversal (T), especially cases in which the gap function is an orbital angular momentum (l) eigenstate, in particular l = -1 Gn wave, spinless, or spin triplet) and l = -2 (d wave, spin singlet). For l not equal 0, these fall into two phases, weak and strong pairing, which may be distinguished topologically. In the cases with conserved spin, we derive explicitly the Hall conductivity for spin as the corresponding topological invariant. For the spinless p-wave case, the weak-pairing phase has a pair wave function that is asympototically the same as that in the Moore-Read (Pfaffian) quantum Hall state, and we argue that its other properties ledge states, quasihole, and toroidal ground states) are also the same, indicating that nonabelian statistics is a generic property of such a paired phase. The strong-pairing phase is an abelian state, and the transition between the two phases involves a bulk Majorana fermion, the mass of which changes sign at the transition. For the d-wave case, we argue that the Haldane-Rezayi state is not the generic behavior of a phase but describes the asymptotics at the critical point between weak and strong pairing, and has gapless fermion excitations in the bulk. In this case the weak-pairing phase is an abelian phase, which has been considered previously. In the p-wave case with an unbroken U(1) symmetry, which can be applied to the double layer quantum Hall problem, the weak-pairing phase has the properties of the 331 state, and with nonzero tunneling there is a transition to the Moore-Read phase. The effects of disorder on noninteracting quasiparticles are considered. The gapped phases survive, but there is an intermediate thermally conducting phase in the spinless p-a ave case, in which the quasiparticles are extended.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available