4.4 Article

The role of ABI3 and FUS3 loci in Arabidopsis thaliana on phase transition from late embryo development to germination

Journal

DEVELOPMENTAL BIOLOGY
Volume 220, Issue 2, Pages 412-423

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1006/dbio.2000.9632

Keywords

Arabidopsis; ABI3; FUS3; embryogenesis; germination; heterochrony; phase transition

Ask authors/readers for more resources

Arabidopsis abi3 and fus3 mutants are defective in late embryo development and their embryos show precocious growth. To understand the function and role of ABI3 and FUSS, we analyzed expression patterns of genes which were normally activated during late embryo development and germination in these mutants. Using the differential display method, both upregulated and downregulated genes were observed in immature siliques of the abi3 fus3 double mutant. Four clones having more abundant expression in the abi3 fus3 double mutant than in wild type were isolated. These genes were activated during wild-type germination, suggesting that some genes that are activated during wild type germination are precociously activated in the abi3 fus3 mutant during late embryo development. Also, genes that were activated during wild-type germination were isolated and their expression patterns during late embryo development in the wild type and in abi3, fus3, and abi3 fus3 mutants were analyzed. Sixteen such clones were found, and II of these showed derepression or precocious activation of gene expression in the mutants. These results indicate that ABI3 and FUSS negatively regulate a particular set of genes during late embryo development. We also showed that immature fus3 siliques accumulated one-third of the wild-type level of abscisic acid (AFA), but mature fus3 siliques accumulated ABA at a level comparable to that in the wild type. The possible mechanisms of controlling developmental timing in late embryo development as well as collaborative and distinct roles of ABI3 and FUSS are discussed. (C) 2000 Academic Press.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available