4.7 Article

A specific activation of the mitogen-activated protein kinase kinase 1 (MEK1) is required for Golgi fragmentation during mitosis

Journal

JOURNAL OF CELL BIOLOGY
Volume 149, Issue 2, Pages 331-339

Publisher

ROCKEFELLER UNIV PRESS
DOI: 10.1083/jcb.149.2.331

Keywords

mitogen-activated protein kinase kinase 1; extracellular signal-regulated kinases; mitosis; Golgi fragmentation; phosphorylation

Categories

Funding

  1. NCRR NIH HHS [RR04050] Funding Source: Medline

Ask authors/readers for more resources

Incubation of permeabilized cells with mitotic extracts results in extensive fragmentation of the pericentriolarly organized stacks of cisternae. The fragmented Golgi membranes are subsequently dispersed from the pericentriolar region. We have shown previously that this process requires the cytosolic protein mitogen-activated protein kinase kinase 1 (MEK1). Extracellular signal-regulated kinase (ERK) 1 and ERK2, the known downstream targets of MEK1, are not required for this fragmentation (Acharya et al., 1998). We now provide evidence that MEK1 is specifically phosphorylated during mitosis. The mitotically phosphorylated MEK1, upon partial proteolysis with trypsin, generates a different peptide population compared with interphase MEK1, MEK1 cleaved with the lethal factor of the anthrax toxin can still be activated by its upstream mitotic kinases, and this form is fully active in the Golgi fragmentation process, We believe that the mitotic phosphorylation induces a change in the conformation of MEK1 and that this form of MEK1 recognizes Golgi membranes as a target compartment. Immunoelectron microscopy analysis reveals that treatment of permeabilized normal rat kidney (NRK) cells with mitotic extracts, treated with or without lethal factor, converts stacks of pericentriolar Golgi membranes into smaller fragments composed predominantly of tubuloreticular elements. These fragments are similar in distribution, morphology, and size to the fragments observed in the prometaphase/metaphase stage of the cell cycle in vivo.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available