4.6 Article

Medial golgi but not late Golgi glycosyltransferases exist as high molecular weight complexes -: Role of luminal domain in ln complex formation and localization

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 275, Issue 16, Pages 11836-11845

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.275.16.11836

Keywords

-

Ask authors/readers for more resources

To investigate the organization of Golgi glycosyltransferases and their mechanism of localization, we have compared the properties of a number of medial and late acting Golgi enzymes. The medial Golgi enzymes, N-acetylglucosaminyltransferase I and II (GnTI and GnTII) required high salt for solubilization and migrated as high molecular weight complexes on sucrose density gradients. In contrast, the late acting Golgi enzymes, beta 1,4-galactosyltransferase and alpha 1,2-fucosyltransferase, were readily solubilized in low salt and migrated as monomers/dimers by sucrose density gradient centrifugation, Analysis of membrane-bound GnTI chimeras indicates that the formation of high molecular weight complexes does not require the transmembrane domain and cytoplasmic tail sequences of GnTI. Furthermore, a soluble form of GnTI, containing the stem region and catalytic domain, accumulated in the Golgi prior to secretion, in contrast to beta 1,4-galactosyltransferase. Soluble GnTI, which also associated with high molecular weight complexes, was comparable with membrane-bound GnTI in its ability to glycosylate newly synthesized glycoproteins in vivo. Mutation of charged residues within the stem region of GnTI, known to be important for kin recognition, had no effect on the efficiency of Golgi localization, the inclusion into high molecular weight complexes, nor functional activity in vivo. The differences in behavior between the medial and late acting Golgi enzymes may contribute to their differential localization and their ability to glycosylate efficiently in the correct Golgi subcompartment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available