4.8 Article

Control of energy transfer in oriented conjugated polymer-mesoporous silica composites

Journal

SCIENCE
Volume 288, Issue 5466, Pages 652-656

Publisher

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/science.288.5466.652

Keywords

-

Ask authors/readers for more resources

Nanoscale architecture was used to control energy transfer in semiconducting polymers embedded in the channels of oriented, hexagonal nanoporous silica. Polarized femtosecond spectroscopies show that excitations migrate unidirectionally from aggregated, randomly oriented polymer segments outside the pores to isolated, aligned polymer chains within the pores. Energy migration along the conjugated polymer backbone occurred more slowly than Forster energy transfer between polymer chains. The different intrachain and interchain energy transfer time scales explain the behavior of conjugated polymers in a range of solution environments. The results provide insights for optimizing nanostructured materials for use in optoelectronic devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available