4.7 Article

Effect of the Interaction of the Amyloid β (1-42) Peptide with Short Single-Stranded Synthetic Nucleotide Sequences: Morphological Characterization of the Inhibition of Fibrils Formation and Fibrils Disassembly

Journal

BIOMACROMOLECULES
Volume 15, Issue 9, Pages 3253-3258

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bm501004q

Keywords

-

Funding

  1. University of Geneva
  2. SNSF [PPOOP2-128380]

Ask authors/readers for more resources

The formation of extracellular neuritic plaques in the brain of, individuals who suffered from Alzheimer's disease (AD) is a major pathological hallmark. These plaques consist of filamentous aggregates of the amyloid beta (1-42) (A beta(42)) proteins. Prevention or reduction of the formation of these fibrils is foreseen as a potential therapeutic approach. In this context, we investigated the interactions between the A beta(42) protein and polyions, in particular short single stranded synthetic nucleotide sequences. The experimental outcomes reported herein provide evidence of the inhibition of amyloid fibril genesis as well as disassembly of existing fibers through electrostatic interaction between the A beta(42) protein and the polyions. Since the polyions and the A beta(42) protein are oppositely charged, the formation of (micellar) inter polyelectrolyte complexes (IPECs) is likely to occur. Since the abnormal deposition of amyloid fibers is an archetype of AD, the outcomes of these investigations, supported by atomic force microscopy imaging in the dry and liquid states, as well as circular dichroism and Fourier transform infrared spectroscopy, are of high interest for the development of future strategies to cure a disease that concerns an ever aging population.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available