4.7 Article

Impact of RGD Nanopatterns Grafted onto Titanium on Osteoblastic Cell Adhesion

Journal

BIOMACROMOLECULES
Volume 13, Issue 3, Pages 896-904

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bm201812u

Keywords

-

Funding

  1. Region Aquitaine
  2. GIS Advanced Materials in Aquitaine
  3. Agence Nationale pour la Recherche (ANR)

Ask authors/readers for more resources

This work reports on the synthesis of titanium bone implants functionalized with nanoparticles (NPs) containing Arg-Gly-Asp-Cys peptide (RGDC) and shows the adhesion behavior of cells seeded on these materials. RGDC peptides were first: conjugated to a norbornenyl-poly(ethylene oxide) macromonomer (Nb-PEO). Then, functional NPs with a size of similar to 300 nm and constituted of polynorbornene core surrounded by poly(ethylene oxide) shell were prepared by ring-opening metathesis polymerization in dispersed medium. The grafting density of these NPs on the titanium surface is up to 2 NPs.mu m(-2) (80 pmol of RGDC per cm(-2) of NP surface). Cell adhesion was evaluated using preosteoblast cells (MC3T3-E1). Results of cells cultured for 24 h showed that materials grafted with NPs functionalized with RGDC peptides enhance specific cell adhesion and can create filopodia-like among NP sites by stressing the cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available