4.8 Article

Internal conductance to CO2 diffusion and C18OO discrimination in C3 leaves

Journal

PLANT PHYSIOLOGY
Volume 123, Issue 1, Pages 201-213

Publisher

AMER SOC PLANT PHYSIOLOGISTS
DOI: 10.1104/pp.123.1.201

Keywords

-

Categories

Ask authors/readers for more resources

O-18 discrimination in CO2 stems from the oxygen exchange between O-18-enriched water and CO2 in the chloroplast, a process catalyzed by carbonic anhydrase (CA). A proportion of this O-18-labeled CO2 escapes back to the atmosphere, resulting in an effective discrimination against (COO)-O-18 during photosynthesis (Delta(18)O). By constraining the delta(18)O of chloroplast water (delta(e)) by analysis of transpired water and the extent of CO2-H2O isotopic equilibrium (theta(eq)) by measurements of CA activity (theta(eq) = 0.75-1.0 for tobacco, soybean, and oak), we could apply measured Delta(18)O in a leaf cuvette attached to a mass spectrometer to derive the CO2 concentration at the physical limit of CA activity, i.e. the chloroplast surface (c(cs)). From the CO2 drawdown sequence between stomatal cavities from gas exchange (c(i)), from Delta(18)O (c(cs)), and at Rubisco sites from Delta(13)C (c(c)), the internal CO2 conductance (g(i)) was partitioned into cell wall (g(w)) and chloroplast (g(ch)) components. The results indicated that g(ch) is variable (0.42-1.13 mol m(-2) s(-1)) and proportional to CA activity. We suggest that the influence of CA activity on the CO2 assimilation rate should be important mainly in plants with low internal conductances.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available