4.7 Article

Tethered Fibronectin Liposomes on Supported Lipid Bilayers as a Prepackaged Controlled-Release Platform for Cell-Based Assays

Journal

BIOMACROMOLECULES
Volume 13, Issue 8, Pages 2254-2262

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bm300426u

Keywords

-

Funding

  1. Genomics Research Center, Academia Sinica, Taiwan

Ask authors/readers for more resources

A biomimetic construct containing an extracellular matrix protein-liposome composite tethered on supported lipid bilayers (SLBs) was formed with fibronectin (FN), and polyethylene glycol (PEG) and cholesterol-containing liposomes. The construct can serve as a multifunctional platform for cell attachment and drug release. The successful fabrication of the FN-liposome-SLB model platform was analyzed in situ with a quartz crystal microbalance with dissipation. The long-term stability of the surface tethered liposomes was measured via an encapsulated fluorescent probe. Less than 20% of the fluorescent probe content was released in 8 days, which compared favorably to the release of 90% of the probe content in one day from a similar construct made without PEG and cholesterol. HeLa cells were used to study the cellular interactions with the model platform. The extracellular matrix composition, FN, was found to be essential to promote HeLa cell adhesion on the liposome-SLB surfaces. Upon cell adhesion, the liposomes were spatially reorganized and absorbed by the cells. The rate of HeLa cell apoptosis was correlated with the surface density of doxorubicin-loaded liposomes, confirming the effective drug delivery through liposomes. The multifunctional model platform could be useful as preadministered, controlled release platforms for cell- and tissue-based assays.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available