4.7 Article

Surface Modification with Poly(sulfobetaine methacrylate-co-acrylic acid) To Reduce Fibrinogen Adsorption, Platelet Adhesion, and Plasma Coagulation

Journal

BIOMACROMOLECULES
Volume 12, Issue 12, Pages 4348-4356

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bm2013185

Keywords

-

Funding

  1. National Science Council [99-2221-E-011-121-MY2]

Ask authors/readers for more resources

Zwitterionic sulfobetaine methacrylate (SBMA) polymers were known to possess excellent antifouling properties due to high hydration capacity and neutral charge surface. In this study, copolymers of SBMA and acrylic acid (AA) with a variety of cc-impositions were synthesized and were immobilized onto polymeric substrates with layer-by-layer polyelectrolyte films via electrostatic interaction. The amounts of platelet adhesion and fibrinogen adsorption were determined to evaluate hemocompatibility of poly(SBMA-co-AA)-modified substrates. Among various deposition conditions by modulating SBMA ratio in the copolymers and pH of the deposition solution, poly(SBMA(56)-co-AA(44)) deposited at pH 3.0 possessed the best hemocompatibility. This work demonstrated that poly(SBMA-co-AA) copolymers adsorbed on polyelectrolyte-base films via electrostatic interaction improve hemocompatibility effectively and are applicable for various substrates including TCPS, PU, and PDMS. Furthermore, poly(SBMA-co-AA)-coated substrate possesses great durability under rigorous conditions. The preliminary hemocompatibility tests regarding platelet adhesion; fibrinogen adsorption, and plasma coagulation suggest the potential of this technique for the application to blood contacting biomedical devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available