4.7 Article

Dissolution Behavior of Different Celluloses

Journal

BIOMACROMOLECULES
Volume 12, Issue 4, Pages 871-879

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bm101555q

Keywords

-

Ask authors/readers for more resources

Celluloses from different origins were dissolved stepwise in N,N-dimethylacetamide/lithium chloride (9% v/w; DMAc/LiCl) with the aim to study the time course of the dissolution process, Completeness of dissolution in the dissolved fractions, possible discrimination effects, and differences between the celluloses. Cellulosic pulps from both annual plants and different wood species were analyzed. The obtained fractions were subject to gel permeation chromatography (GPC) with multiple detection to monitor the development of molecular mass distribution (MMD), molecular mass, and recovered mass. The dissolution behavior of accompanying xylans was followed by quantitative analysis of the uronic acids by fluorescence. labeling - GPC. The morphological changes at the remaining fibers in the stepwise dissolution were addressed by SEM. The time needed to dissolve completely the cellulosic pulp differed from species to species, mainly, between pulps from annual plants and pulps from wood. Annual plants generally needed much longer to dissolve completely. In the beginning of the dissolution, the dissolved fractions of annual plants showed a distinct discrimination effect because they were enriched in hemicellulose. By contrast, wood pulps dissolve fast and without distinct changes in the MMD of the dissolved fractions over time. Bagasse pulp is an exception the observation for annual plants and rather resembled the behavior of wood celluloses. Prolonged dissolution times, as often practiced in Cellulose GPC, do not lead to any improvements regarding the determination of molecular mass, MMD, and recovered, Mass of injected sample, so that the dissolution times required for reliable GPC analysis can be significantly shortened, which will he important for biorefinery analytics with high numbers of samples

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available