4.7 Article

In Vitro Cytotoxicity of RAFT Polymers

Journal

BIOMACROMOLECULES
Volume 11, Issue 2, Pages 412-420

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bm901129x

Keywords

-

Funding

  1. Australian Research Council (ARC) under a Discovery Project Scheme
  2. Nanomedicine Initiative of The University of New South Wales

Ask authors/readers for more resources

The RAFT technique has been increasingly used to generate polymers for potential biological applications. However, to-date, the toxicity of the RAFT-polymers has received limited attention. In this study, the in vitro cytotoxicity of three different, RAFT-synthesized, water-soluble polymers was investigated using three different adherent cell lines via CellTiter-Blue cell viability and the cytosolic enzyme lactate dehydrogenase (LDH) cytotoxicity assays. In brief, P(OEG-A) and P(OEG-MA) samples bearing omega-dithiobenzoate or omega-trithiocarbonate end groups and varying P(HPMA) samples bearing omega-dithiobenzoate, omega-trithiocarbonate, or non-RAFT end groups. were investigated using Chinese hamster ovary cells (CHO-K1), mouse macrophage cells (Raw264.7), and mouse fibroblast cells (NIH3T3) Any charges in the morphology of the cells after treatment with polymers were monitored via microscopy. The cytotoxicily of the polymers after treatment with metabolic liver enzymes was also evaluated. The average viability of CHO-K1 and NIH3T3 cells treated with dithiobenzoate and trithiocarbonate-ended OEG-based polymers (1000 mu M) for 24 h was close to 100% The RAW264 7 cells were slightly more sensitive when incubated with dithiobenzoate-ended polymers (cell viability above 73%) for 24 h The viability of the cells after 3 days of incubation with the polymers either slightly decreased or showed no change with respect to the viabilities obtained after 1 day of incubation. Analyses of cell morphology and cell membrane integrity via microscopy and a LDH assay confirmed the cell viability results obtained via CellTiter-Blue Assay. Unexpectedly. dithiobenzoate-ended P(HPMA) (at 1000 mu M) exhibited high cytotoxicity after 24 h with all three cells lines. Further investigation of various P(HPMA) samples revealed that trithiocarbonate-ended and HPMA-capped P(HPMA)s at the same concentration were nontoxic over the same period of time. Also, dithiobenzoate-ended P(HPMA) at low concentrations (<= 200 mu M) can be tolerated by the cells tested.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available