4.7 Article

Quantitative Correlation between the Protein Primary Sequences and Secondary Structures in Spider Dragline Silks

Journal

BIOMACROMOLECULES
Volume 11, Issue 1, Pages 192-200

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bm9010672

Keywords

-

Funding

  1. National Science Foundation [CHE-0612553, DMR-0805197]
  2. NIH [NIBIB-5ROIEB000490-05]
  3. NATIONAL CENTER FOR RESEARCH RESOURCES [P41RR002231] Funding Source: NIH RePORTER
  4. NATIONAL INSTITUTE OF BIOMEDICAL IMAGING AND BIOENGINEERING [R01EB000490] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Synthetic spider silk holds great potential for use in various applications spanning medical uses to ultra lightweight armor; however, producing synthetic fibers with mechanical properties comparable to natural spider silk has eluded the scientific community. Natural dragline spider silks are commonly made from proteins that contain highly repetitive amino acid motifs, adopting an array of secondary structures. Before further advances can be made in the production of synthetic fibers based on spider silk proteins, it is imperative to know the percentage of each amino acid in the protein that forms a specific secondary structure. Linking these percentages to the primary amino acid sequence of the protein will establish a structural foundation for synthetic silk. In this study, nuclear magnetic resonance (NMR) techniques are used to quantify the percentage of Ala, Gly, and Ser that form both beta-sheet and helical secondary structures. The fraction of these three amino acids and their secondary structure are quantitatively correlated to the primary amino acid sequence for the proteins that comprise major and minor ampullate silk from the Nephila clavipes spider providing a blueprint for synthetic spider silks.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available