4.7 Article

Effect of Gelatin Gelation Kinetics on Probe Diffusion Determined by FRAP and Rheology

Journal

BIOMACROMOLECULES
Volume 11, Issue 12, Pages 3359-3366

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bm1008487

Keywords

-

Funding

  1. VINN Excellence Centre SuMo Biomaterials

Ask authors/readers for more resources

The time-dependent diffusion and mechanical properties of gelatin in solution, in the gel state, and during the sol/gel transition were determined using fluorescence recovery after photobleaching (FRAP) and rheology. The parameters in the experimental design were 2% w/w and 5% w/w gelatin concentration; 15, 20, and 25 degrees C end quench temperatures; and Na-2-fluorescein, 10 kDa FITC-dextran, and 500 kDa FITC-dextran as diffusion probes. The samples were monitored in solution at 60 degrees C, during quenching, for 75 min at end quench temperatures and after 1, 7, and 14 days of storage at the end quench temperature. The effect of temperature on the probe diffusion was normalized by determining the free diffusion of the probes in pure water for the different temperatures. The results gained by comparing FRAP and rheology showed that FRAP is able to capture structural changes in the gelatin before gelation occurs, which was interpreted as a formation of transient networks. This was clearly seen for 2% w/w gelatin and 20 and 25 degrees C end quench temperatures. The structural changes during sol/gel transition are detected only by the larger probes, giving information about the typical length scales in the gelatin structure. The normalized diffusion rate increased after 7 and 14 days of storage. This increase was most pronounced for fluorescein but was also seen for the larger probes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available