4.7 Article

Entrainment and desposition rates of droplets in annular two-phase flow

Journal

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
Volume 43, Issue 9, Pages 1573-1589

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0017-9310(99)00236-7

Keywords

-

Ask authors/readers for more resources

The droplet entrainment from a liquid him is important to the mass, momentum, and energy transfer process in annular two-phase flow. For example, the amount of entrainment as well as the rate of entrainment significantly affect the occurrences of the dryout, whereas the post CHF heat transfer depends strongly on the entrainment and droplet sizes. Despite the importance of the entrainment rate, there have been no satisfactory correlations available in the literature. In view of these, correlations for entrainment sate covering both entrance region and equilibrium region have been developed from a simple model in collaboration with data. Results show that the entrainment rate varies considerably in the entrainment development region. However, at a certain distance from an inlet it attains an equilibrium value. A simple approximate correlation has been obtained for the equilibrium state where entrainment rate and deposition rate become equal. The result indicates that the equilibrium entrainment rate is proportional to Weber number based on the hydraulic diameter of a tube. (C) 2000 Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available