4.7 Article

Galactosylated Poly(2-(2-aminoethyoxy)ethoxy)phosphazene/DNA Complex Nanoparticles: In Vitro and In Vivo Evaluation for Gene Delivery

Journal

BIOMACROMOLECULES
Volume 11, Issue 4, Pages 927-933

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bm901346m

Keywords

-

Funding

  1. National Basic Research Program of China [2010CB934000, 2007CB935800]
  2. National Natural Science Foundation of China [30925041, 30901866]
  3. National Science and Technology Major Project Key New Drug Creation and Manufacturing Program [2009ZX09501-024, 2009ZX09301-001]
  4. Shanghai Nanomedicine Program [0852 nm05700]

Ask authors/readers for more resources

To achieve efficient gene delivery to the tumor after intravenous administration, biodegradable poly(2-(2aminoethyoxy)ethoxy)phosphazene (PAEP) was modified by lactobionic acid, bearing a galactose group as a targeting ligand. Galactosylated poly(2-(2-aminoethyoxy)ethoxy)phosphazene (Gal-PAEP) with 4.9% substitution degree of galactose could condense pDNA into nanoparticles with a size around 130 nm at the polymer/DNA ratio (N/P) of 2-40. For BEL-7402 cells, the in vitro transfection efficiency of gal-PAEP/DNA complex nanoparticles (gal-PACNs) was much higher than that of the PAEP/DNA complex nanoparticles (PACNs). MTT assay indicated that the cytotoxicity of PACNs significantly decreased after conjugating with the galactose moiety. Gal-PACNs displayed the selective gene expression in the tumor and liver with relatively low gene expression in the lung or other organs compared with PACNs. These results suggested that gal-PACNs could be a promising targeting gene carrier to deliver a therapeutic gene in future.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available