4.7 Article

Synthesis of Biobased Polyurethane from Oleic and Ricinoleic Acids as the Renewable Resources via the AB-Type Self-Condensation Approach

Journal

BIOMACROMOLECULES
Volume 11, Issue 5, Pages 1202-1211

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bm100233v

Keywords

-

Funding

  1. CNRS
  2. French Ministry of Education
  3. Aquitaine Council

Ask authors/readers for more resources

Polyurethane (PU) from methyl oleate (derived from sunflower oil) and ricinoleic acid (derived from castor oil) was synthesized using the AB-type self-polycondensation approach for the first time. In the present work, three novel AB-type monomers, namely, a mixture of 10-hydroxy-9-methoxyoctadecanoyl azide/9-hydroxy-10-methoxyoctadecanoyl azide (HMODAz), 12-hydroxy-9-cis-octadecenoyl azide (HODEAz) and methyl-N-11-hydroxy-9-cis-heptadecen carbamate (MHHDC) were synthesized from methyl oleate and ricinoleic acid using simple reaction steps. Out of these, HMODAz and HODEAz monomers were polymerized by the acyl-azido and hydroxyl AB-type self-condensation approach, while MHHDC monomer was polymerized through AB-type self-condensation via transurethane reaction. The acyl-azido and hydroxyl self-condensations were carried out at various temperatures (50, 60, 80. and 110 degrees C) in bulk with and without catalyst. A FTIR study of the polymerization, using HMODAz at 80 degrees C without catalyst, indicates in situ formation of an intermediate isocyanate group in the first 15-30 min, and further onward, the molar mass increases as observed by SEC analysis. In the case of the MHHDC monomer, a transurethane reaction was used to obtain a similar PU (which was obtained by AB-type acyl-azido and hydroxyl self-condensation of HODEAz) in the presence of titanium tetrabutoxide as a catalyst at 130 degrees C. HMODAz, HODEAz, MHHDC, and corresponding polyurethanes were characterized by FUR, (1)H NMR, (13)C NMR, and MALDI-TOF mass spectroscopy. Differential scanning calorimetric analysis of polyurethanes derived from HMODAz, HODEAz, and MHHDC showed two different glass transition temperatures for soft segments (at lower temperature) and hard segments (at higher temperature), indicating phase-separated morphology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available