4.7 Article

Design of Resorbable Porous Tubular Copolyester Scaffolds for Use in Nerve Regeneration

Journal

BIOMACROMOLECULES
Volume 10, Issue 5, Pages 1259-1264

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bm900093r

Keywords

-

Funding

  1. Swedish Foundation for Strategic Research [A302-139]

Ask authors/readers for more resources

Copolymers of L,L-lactide (LLA), epsilon-caprolactone (CL), trimethylene carbonate (TMC), or 1,5-dioxepane-2-one (DXO) were used to design porous tubular scaffolds with various mechanical properties, porosities, and numbers of layers in the tube wall. The mechanical properties of the tubular scaffold types showed good suitability for nerve regeneration and other nonload-bearing tissue engineering applications and were easy to handle without damaging the porous structure. A low stannous 2-ethylhexanoate-to-monomer ratio of 1:10000 did not change the tensile properties of the copolymer tubes significantly compared to those of scaffolds made using a Sn(Oct)(2)-to-monomer ratio of 1:600. The adaptability of the immersion coating and porogen leaching technique was demonstrated by creating tubes with different designs. Tubes with different wall layers were created by varying the immersion solutions, and the ease of altering the porosity, pore shape, and pore size was exemplified by using sodium chloride alone or mixed with poly(ethylene glycol) as porogen.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available