4.7 Article

Influence of Substitution Pattern on Solution Behavior of Hydroxypropyl Methylcellulose

Journal

BIOMACROMOLECULES
Volume 10, Issue 3, Pages 522-529

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bm801140q

Keywords

-

Ask authors/readers for more resources

Industrially produced hydroxypropyl methylcellulose (HPMC) is a chemically heterogeneous material, and it is thus difficult to predict parameters related to function on the basis of the polymer's average chemical values. In this study, the solution behavior of seven HPMC batches was correlated to the molecular weight, degree of substitution, and substituent pattern. The initial onset of phase separation, so-called clouding, generally followed an increased average molecular weight and degree of substitution. However, the slope of the clouding curve was affected by the substitution pattern, where the heterogeneously substituted batches had very shallow slopes. Further investigations showed that the appearance of a shallow slope of the clouding curve was a result of the formation of reversible polymer structures, formed as a result of the heterogeneous substituent pattern. These structures grew in size with temperature and concentration and resulted in an increase in the viscosity of the solutions at higher temperatures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available