4.7 Article

Kinetics of Nanoparticle Targeting by Dissipative Particle Dynamics Simulations

Journal

BIOMACROMOLECULES
Volume 10, Issue 11, Pages 3089-3097

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bm900785c

Keywords

-

Funding

  1. National Institute of Health [1R21 CA112436]

Ask authors/readers for more resources

Dissipative particle dynamics simulations are applied to study nanoparticle targeting to a cell surface containing a high concentration of receptors. We found that the normalized number of bound ligands follows an exponential growth function 1 - exp(-t/tau), with the lifetime tau increasing as a function of the binding strength. With increasing binding energy, the shape of die adsorbed nanoparticle becomes ellipsoidal due to a large number of stably bound ligands, most of which are positioned on the nanoparticle periphery. For a low degree of functionalization of homogeneously distributed ligands, the kinetics of nanoparticle attachment slows down due to interference by nonfunctional chains, the overall number of bound ligands at equilibrium decreases, although the stability of ligand attachment increases. Janus-like nanopaticles with functionalized chains positioned on one side of the nanoparticle exhibit more rapid binding to the cell surface with a large equilibrium number of stably bound ligands.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available