4.7 Article

Polyphosphazene/nano-hydroxyapatite composite microsphere scaffolds for bone tissue engineering

Journal

BIOMACROMOLECULES
Volume 9, Issue 7, Pages 1818-1825

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bm800031t

Keywords

-

Ask authors/readers for more resources

The nontoxic, neutral degradation products of amino acid ester polyphosphazenes make them ideal candidates for in vivo orthopedic applications. The quest for new osteocompatible materials for load bearing tissue engineering applications has led us to investigate mechanically competent amino acid ester substituted polyphosphazenes. In this study, we have synthesized three biodegradable polyphosphazenes substituted with side groups, namely, leucine, valine, and phenylalanine ethyl esters. Of these polymers, the phenylalanine ethyl ester substituted polyphosphazene showed the highest glass transition temperature (41.6 degrees C) and, hence, was chosen as a candidate material for forming composite microspheres with 100 nm sized hydroxyapatite (nHAp). The fabricated composite microspheres were sintered into a three-dimensional (3-D) porous scaffold by adopting a dynamic solvent sintering approach. The composite microsphere scaffolds showed compressive moduli of 46-81 MPa with mean pore diameters in the range of 86-145 mu m. The 3-D polyphosphazene-nHAp composite microsphere scaffolds showed good osteoblast cell adhesion, proliferation, and alkaline phosphatase expression and are potential suitors for bone tissue engineering applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available