4.6 Article

The role of silicon in wetting and pressureless infiltration of SiCp preforms by aluminum alloys

Journal

JOURNAL OF MATERIALS SCIENCE
Volume 35, Issue 9, Pages 2167-2173

Publisher

KLUWER ACADEMIC PUBL
DOI: 10.1023/A:1004758305801

Keywords

-

Ask authors/readers for more resources

Silicon plays an important role in the production of Al/SiC metal matrix composites. As an alloying element in aluminum, silicon retards the kinetics of the chemical reactions that result in the formation of the unwanted intermetallics Al4C3 and Al4SiC4. As a thin coating on silicon carbide, silicon becomes an active participant in a thermally activated chemical reaction that enhances wetting of silicon carbide by aluminum alloys. Consequently, Al/SiC composites made with siliconized silicon carbide and silicon rich aluminum alloys show mechanical properties that are significantly different from those of similar composites produced with unsiliconized silicon carbide or with aluminum alloys that do not contain silicon. It is shown that a silicon coating on SiC significantly enhances wetting of SiC particles by aluminum alloys, reduces porosity, does not affect the modulus of elasticity, but decreases the modulus of rupture of Al/SiC metal matrix composites. (C) 2000 Kluwer Academic Publishers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available