4.7 Article

Learning driver-response relationships from synchronization patterns

Journal

PHYSICAL REVIEW E
Volume 61, Issue 5, Pages 5142-5148

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.61.5142

Keywords

-

Ask authors/readers for more resources

We test recent claims that causal (driver-response) relationships can be deduced from interdependencies between simultaneously measured time series. We apply two recently proposed interdependence measures that should give results similar to cross predictabilities used by previous authors. The systems that we study are asymmetrically coupled simple models (Lorenz, Roessler, and Henon models), the couplings being such that they lead to generalized synchronization. If the data were perfect (noise-free, infinitely long), we should be able to detect, at least in some cases, which of the coupled systems is the driver and which the response. This might no longer he true if the time series has finite length, instead. estimated interdependencies depend strongly on which of the systems has a higher effective dimension at the typical neighborhood sizes used to estimate them, and causal relationships are more difficult to detect. We also show that slightly different variants of the interdependence measure can have quite different sensitivities.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available