4.4 Article

Macroscale thermodynamics and the chemical potential for swelling porous media

Journal

TRANSPORT IN POROUS MEDIA
Volume 39, Issue 2, Pages 187-225

Publisher

KLUWER ACADEMIC PUBL
DOI: 10.1023/A:1006661330427

Keywords

macroscale; chemical potential; mixture theory; porous media; swelling porous media

Ask authors/readers for more resources

The thermodynamical relations for a two-phase, N-constituent, swelling porous medium are derived using a hybridization of averaging and the mixture-theoretic approach of Bowen. Examples of such media include 2-1 lattice clays and lyophilic polymers. A novel, scalar definition for the macroscale chemical potential for porous media is introduced, and it is shown how the properties of this chemical potential can be derived by slightly expanding the usual Coleman and Noll approach for exploiting the entropy inequality to obtain near-equilibrium results. The relationship between this novel scalar chemical potential and the tensorial chemical potential of Bowen is discussed. The tensorial chemical potential may be discontinuous between the solid and fluid phases at equilibrium; a result in clear contrast to Gibbsian theories. It is shown that the macroscopic scalar chemical potential is completely analogous with the Gibbsian chemical potential. The relation between the two potentials is illustrated in three examples.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available