4.7 Article

Interfacial sheer rheology of aged and heat-treated β-lactoglobulin films:: Displacement by nonionic surfactant

Journal

JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY
Volume 48, Issue 5, Pages 1491-1497

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jf990976z

Keywords

interfacial shear rheology; beta-lactoglobulin; Tween 20; heat treatment; pH effects

Ask authors/readers for more resources

Interfacial shear rheology of adsorbed beta-lactoglobulin films (bulk protein concentration 10(-3) wt %) has been studied over the temperature range 20-90 degrees C using a two-dimensional Couette-type viscometer. Effects of the type of interface (air-water, triolein-water, and n-dodecane-water), the pH (2.0, 5.6, 6.0, 7.0, and 9.0), and the extent of the heat treatment have been assessed via measurements of changes in the apparent interfacial shear viscosity and elasticity before and after the addition of increasing amounts of nonionic surfactant Tween 20 (polyoxyethylene sorbitan monolaurate). The highest interfacial viscosities were obtained at the n-dodecane-water interface and the lowest at the air-water interface. Competitive displacement of protein from the interface by Tween 20 was easier at the air-water and n-dodecane-water interfaces as compared to the triolein-water interface. The surface shear viscosity was higher and the displacement by Tween 20 more difficult as the isoelectric point of the protein was approached, which is in agreement with the presence of a more strongly cross-linked protein network at the interface. The effect of heat treatment was dependent on the pH of the aqueous solution. No simple relationship between the surface rheological characteristics and the ease of displacement by Tween 20 could be inferred.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available