4.3 Article

Ultrastructural analysis and TUNEL demonstrate motor neuron apoptosis in Werdnig-Hoffmann disease

Journal

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1093/jnen/59.5.398

Keywords

apoptosis; DNA fragmentation; electron microscopy; protein p53; spinal cord; proto-oncogene proteins c-bcl-2; Werdnig-Hoffmann disease

Ask authors/readers for more resources

Werdnig-Hoffmann disease (WHD) is the most severe clinical type of spinal muscular atrophy characterized by loss of lower motor neurons and paralysis. We examined the hypothesis that disease pathogenesis is based on an inappropriate persistence of normally occurring motor neuron programmed cell death. The diagnosis of WHD was made on the basis of clinical findings, electromyoneurography, and biopsy, and further confirmed by mutation analysis of the survival motor neuron (SMN) and neuronal apoptosis inhibitory protein (NAIP) genes using PCR. We used ultrastructural analysis as well as TUNEL and ISEL methods to assess DNA fragmentation, and immunocytochemistry to identify expression of the apoptosis-related proteins bcl-2 and p53. A significant number of motor neurons in the spinal cord of children with WHD were shown to die by apoptosis. As revealed by TUNEL, dying neurons in WHD patients comprised 0.2%-6.4% of the neuron numbers counted. This finding contradicts earlier studies that failed to find such evidence and suggests that early blockade of prolonged meter neuron apoptosis may be a potential therapeutic strategy for WHD.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available