4.5 Article

Plasmatocyte spreading peptide (PSP1) and growth blocking peptide (GBP) are multifunctional homologs

Journal

JOURNAL OF INSECT PHYSIOLOGY
Volume 46, Issue 5, Pages 817-824

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0022-1910(99)00171-7

Keywords

insects; immunity; encapsulation; hemocytes; neuroendocrine; stress

Ask authors/readers for more resources

Recently, we identified Plasmatocyte spreading peptide (PSP1) from the moth Pseudoplusia includens and reported that it mediates adhesion of hemocytes to foreign surfaces. PSP1 is structurally very similar to three classes of peptides identified earlier from other species of Lepidoptera: growth blocking peptide (GBP) originally identified in Pseudaletia separata, and a series of related peptides from other species designated as paralytic (PP) or cardioactive (CAP) peptides. In this study, we conducted parallel experiments in P. includens and P. separata to determine whether PSP1 and GBP have distinct or multiple biological activities. Both peptides affected the adhesive state of hemocytes from each moth very similarly. PSP1 and GBP exhibited significant growth blocking and paralytic activity in P. separata. Both peptides also had growth blocking activity in P. includens although larvae had to be injected with higher doses of each peptide to reduce weight gain than was observed for P. separata. However, GBP and PSP1 had little paralytic activity in P. includens. Collectively, our results indicate that GBP and PSP1 are multifunctional, but that some interspecific variation also exists in their growth blocking and paralytic activities. We suggest that all PSP1, GBP, PP and CAP family members are homologs that likely have multiple biological activities. Based upon the unique consensus sequence of their N termini, we propose that these molecules be henceforth referred to as members of the ENF peptide family. (C) 2000 Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available