4.4 Article

The influence of single VB thalamocortical impulses on barrel columns of rabbit somatosensory cortex

Journal

JOURNAL OF NEUROPHYSIOLOGY
Volume 83, Issue 5, Pages 2802-2813

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.2000.83.5.2802

Keywords

-

Funding

  1. NIMH NIH HHS [MH-59322] Funding Source: Medline

Ask authors/readers for more resources

Extracellular recordings were obtained from single neurons in ventrobasal (VB) thalamus of awake rabbits while field potentials were recorded at various depths within topographically aligned and nonaligned barrel columns of somatosensory cortex (S1). Spike-triggered averages of cortical field potentials were obtained following action potentials in thalamic neurons. Action potentials in a VB neuron elicited a cortical response within layer 4 with three distinct components. 1) A biphasic, initially positive response (latency <1 ms) was interpreted to reflect activation of the VB axon terminals (the AxTP). This response was not affected by infusion of an alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptor antagonist within the barrel. In contrast, later components of the response were completely eliminated and were interpreted to reflect focal synaptic potentials. 2) A negative potential [focal synaptic negativity (FSN)] occurred at a mean latency of 1.65 ms and lasted similar to 4 ms. This response had a rapid rise time (similar to 0.7 ms) and was interpreted to reflect monosynaptic excitation. 3) The third component was a positive potential (the FSP), with a slow rise time and a half-amplitude duration of similar to 30 ms. The FSP showed a weak reversal in superficial cortical layers and was interpreted to reflect di/polysynaptic inhibition. The amplitudes of the AxTP, the FSN, and the FSP reached a peak near layer 4 and were highly attenuated in both superficial and deep cortical layers. All components were attenuated or absent when the cortical electrode was missaligned from the thalamic electrode by a single cortical barrel. Deconvolution procedures revealed that the autocorrelogram of the presynaptic VB neuron had very little influence on either the amplitude or duration of the AxTP or the FSN, and only a minor influence (mean, 11%) on the amplitude of the FSP. We conclude that individual VB thalamic impulses entering a cortical barrel engage both monosynaptic excitatory and di/polysynaptic inhibitory mechanisms. Putative inhibitory interneurons of an S1 barrel receive a highly divergent/convergent monosynaptic input from the topographically aligned VB barreloid, and this results in sharp synchrony among these interneurons. We suggest that single-fiber access to disynaptic inhibition is facilitated by this sharp synchrony, and that the FSP reflects a consequent synchronous wave of feed-forward inhibition within the S1 barrel.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available