4.7 Article

Manifestation of intrinsic defects in optical properties of self-organized opal photonic crystals

Journal

PHYSICAL REVIEW E
Volume 61, Issue 5, Pages 5784-5793

Publisher

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevE.61.5784

Keywords

-

Ask authors/readers for more resources

Self-organized synthetic opals possessing a face centered cubic (fcc) lattice are promising fur fabrication of a three-dimensional photonic crystal with a full photonic band gap in the visible. The fundamental limiting factor of this method is the large concentration of lattice defects and, especially, planar stacking faults, which are intrinsic to self-assembling growth of colloidal crystal. We have studied the influence of various types of defects on photonic band structure of synthetic opals by means of optical transmission, reflection and diffraction along different crystallographic directions. We found that in carefully chosen samples the stacking probability cu can be as high as 0.8-0.9 revealing the strong preference of fee packing sequence over the hexagonal close-packed (hcp). It is shown that scattering on plane stacking faults located perpendicular to the direction of growth results in a strong anisotropy of diffraction pattern as well as in appearance of a pronounced doublet structure in transmission and reflection spectra taken from the directions other than the direction of growth. This doublet is a direct manifestation of the coexistence of two crystallographic phases-pure fee and strongly faulted. As a result the inhomogeneously broadened stop-bands overlap over a considerable amount of phase space. The latter, however, does not mean the depletion of the photonic density of states since large disordering results in filling of the partial gaps with both localized and extended states.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available