4.5 Article

Two Distinct Ca2+ Signaling Pathways Modulate Sperm Flagellar Beating Patterns in Mice

Journal

BIOLOGY OF REPRODUCTION
Volume 85, Issue 2, Pages 296-305

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1095/biolreprod.110.089789

Keywords

calcium; fallopian tube; fertilization; hyperactivation; phosphorylation; signal transduction; sperm capacitation; sperm motility and transport; spermatozoa

Funding

  1. NIH [1RO3HD062471-01]

Ask authors/readers for more resources

Hyperactivation, a swimming pattern of mammalian sperm in the oviduct, is essential for fertilization. It is characterized by asymmetrical flagellar beating and an increase of cytoplasmic Ca2+. We observed that some mouse sperm swimming in the oviduct produce high-amplitude pro-hook bends (bends in the direction of the hook on the head), whereas other sperm produce high-amplitude anti-hook bends. Switching direction of the major bends could serve to redirect sperm toward oocytes. We hypothesized that different Ca2+ signaling pathways produce high-amplitude pro-hook and anti-hook bends. In vitro, sperm that hyperactivated during capacitation (because of activation of CATSPER plasma membrane Ca2+ channels) developed high-amplitude pro-hook bends. The CATSPER activators procaine and 4-aminopyridine (4-AP) also induced high-amplitude pro-hook bends. Thimerosal, which triggers a Ca2+ release from internal stores, induced high-amplitude anti-hook bends. Activation of CATSPER channels is facilitated by a pH rise, so both Ca2+ and pH responses to treatments with 4-AP and thimerosal were monitored. Thimerosal triggered a Ca2+ increase that initiated at the base of the flagellum, whereas 4-AP initiated a rise in the proximal principal piece. Only 4-AP triggered a flagellar pH rise. Proteins were extracted from sperm for examination of phosphorylation patterns induced by Ca2+ signaling. Procaine and 4-AP induced phosphorylation of proteins on threonine and serine, whereas thimerosal primarily induced dephosphorylation of proteins. Tyrosine phosphorylation was unaffected. We concluded that hyperactivation, which is associated with capacitation, can be modulated by release of Ca2+ from intracellular stores to reverse the direction of the dominant flagellar bend and, thus, redirect sperm.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available