4.5 Article

Assessing the Role of Claudins in Maintaining the Integrity of Epididymal Tight Junctions Using Novel Human Epididymal Cell Lines

Journal

BIOLOGY OF REPRODUCTION
Volume 82, Issue 6, Pages 1119-1128

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1095/biolreprod.109.083196

Keywords

blood-epididymis barrier; cell line; epididymis; male infertility; male reproductive tract; principal cells; sperm maturation; tight junction

Funding

  1. Canadian Institutes for Health Research (CIHR)
  2. Natural Sciences and Engineering Research Council of Canada (NSERC)
  3. Fonds de la recherche en sante du Quebec

Ask authors/readers for more resources

The epididymis is responsible for posttesticular sperm maturation. Sperm maturation is dependent on the luminal microenvironments along the epididymis. Though the role of the epididymis is well established, the molecular and cellular mechanisms responsible for sperm maturation remain to be elucidated, particularly in the human, as limited biological tools exist. We have established the first stable epithelial cell lines transformed with SV40 large T antigen (LTAg) from two regions of the human adult epididymis. The cell lines are composed of homogenous populations of diploid principal cells that possess ultrastructural characteristics similar to those of human principal cells in vivo. These cells express transcripts for adherens (cadherins CDH1 and CDH2) and tight (claudins CLDN1, CLDN2, CLDN3, CLDN4, CLDN7, and CLDN8) junctions as well as desmosomes (desmoplakin, DSP). Transepithelial resistance (TER) measurements in fertile human caput epididymal cell line 1 (FHCE1) as well as the immunolocalization of tight junctional protein 1 (TJP1), occludin, and CLDN1 indicate that these cells form functional tight junctions. Furthermore, knockdown of CLDN1, CLDN3, CLDN4, or CLDN7 using specific siRNAs resulted in significant decreases in TER, suggesting that these CLDNs are essential for the barrier function of the blood- epididymis barrier. Disruption of CLDN1, CLDN3, CLDN4, and CLDN7 could, therefore, lead to epididymal dysfunction, resulting in male infertility.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available