4.6 Article

Solubilization, partial purification, and characterization of a fatty aldehyde decarbonylase from a higher plant, Pisum sativum

Journal

ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS
Volume 377, Issue 2, Pages 341-349

Publisher

ACADEMIC PRESS INC
DOI: 10.1006/abbi.2000.1798

Keywords

decarbonylase; biosynthesis of hydrocarbon; fatty aldehyde; Pisum sativum; cuticular wax

Ask authors/readers for more resources

Enzymatic decarbonylation of fatty aldehydes generates hydrocarbons. The particulate enzyme that catalyzes the decarbonylation has not been solubilized and purified from any organism but a green alga. Here we report the solubilization, purification, and partial characterization of the decarbonylase from a higher plant. Decarbonylase from a particulate preparation from pea (Pisum sativum) leaves, enriched in decarbonylase, was solubilized with P-octyl glucoside and partially purified. SDS-PACE showed a major protein band at 67 kDa. Rabbit antibodies raised against this protein specifically cross-reacted with the 67-kDa protein in solubilized microsomal preparations; anti-ribulose bisphosphate carboxylase cross-reacted only with the 49-kDa large subunit of the carboxylase, but not with any protein near 67 kDa, showing the absence of any contamination from cross-linked small-large subunit of the carboxylase found in the green algal enzyme preparation. Anti-67-kDa protein antibodies inhibited decarbonylation catalyzed by the enzyme preparations, showing that this protein represents the decarbonylase. Decarbonylase activity of the purified enzyme required phospholipids for activity; phosphatidylcholine was the preferred lipid although phosphatidylserine and phosphatidylethanolamine could substitute less effectively. Half-maximal activity was observed at 40 mu M octadecanal. The purified enzyme produced alkane and CO and was inhibited by O-2, NADPH, and DTE. Metal ion chelators severely inhibited the enzyme and Cu2+ fully restored the enzyme activity. Purified enzyme preparations consistently showed the presence of Cu, and copper protoporphyrin IX catalyzed decarbonylation. These results suggest that this higher plant enzyme probably is a Cu enzyme unlike the green algal enzyme that was found to have Co. (C) 2000 Academic Press.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available