4.6 Article

Binding of alkylurea inhibitors to epoxide hydrolase implicates active site tyrosines in substrate activation

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 275, Issue 20, Pages 15265-15270

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M000278200

Keywords

-

Funding

  1. NIEHS NIH HHS [2 R01 ES02710-16, 2 P42 ES0469909] Funding Source: Medline
  2. NIGMS NIH HHS [GM56838] Funding Source: Medline

Ask authors/readers for more resources

The structures of two alkylurea inhibitors complexed with murine soluble epoxide hydrolase have been determined by x-ray crystallographic methods, The alkyl substituents of each inhibitor make extensive hydrophobic contacts in the soluble epoxide hydrolase active site, and each urea carbonyl oxygen accepts hydrogen bonds from the phenolic hydroxyl groups of Tyr(381) and Tyr(465). These hydrogen bond interactions suggest that Tyr(381) and/or Tyr(465) are general acid catalysts that facilitate epoxide ring opening in the first step of the hydrolysis reaction; Tyr(485) is highly conserved among all epoxide hydrolases, and Tyr(381) is conserved among the soluble epoxide hydrolases. In one enzyme-inhibitor complex, the urea carbonyl oxygen additionally interacts with Gln(382). If a comparable interaction occurs in catalysis, then Gln(382) may provide electrostatic stabilization of partial negative charge on the epoxide oxygen. The carboxylate side chain of Asp(333) accepts a hydrogen bond from one of the urea NH groups in each enzyme-inhibitor complex. Because Asp(333) is the catalytic nucleophile, its interaction with the partial positive charge on the urea NH group mimics its approach toward the partial positive charge on the electrophilic carbon of an epoxide substrate. Accordingly, alkylurea inhibitors mimic features encountered in the reaction coordinate of epoxide ring opening, and a structure-based mechanism is proposed for leukotoxin epoxide hydrolysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available