4.8 Article

Single molecules of highly purified bacterial alkaline phosphatase have identical activity

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 122, Issue 20, Pages 4853-4855

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja994488j

Keywords

-

Ask authors/readers for more resources

The central paradigm of chemistry is that molecular structure determines molecular function. Details of this paradigm can be tested with single-molecule enzymology, where the activity of individual molecules is studied. In all cases reported thus far, there is a large molecule-to-molecule heterogeneity in activity and activation energy. This heterogeneity must arise from differences in structure. Replicate incubations on the same molecule yield consistent results; the structural heterogeneity must be stable over the time period of the experiment, which can extend over several hours. In this paper, we demonstrate that highly purified molecules of bacterial alkaline phosphatase generate identical activity; structurally identical molecules behave identically. In contrast, the glycosylated mammalian enzyme demonstrates a complex isoelectric focusing pattern and has a dramatic molecule-to-molecule variation in activity and activation energy. Glycosylation affects both the kinetics and energetics of this enzymatically catalyzed reaction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available